Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.737
Filtrar
1.
Nat Commun ; 15(1): 3882, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719809

RESUMEN

In this randomized phase II clinical trial, we evaluated the effectiveness of adding the TLR agonists, poly-ICLC or resiquimod, to autologous tumor lysate-pulsed dendritic cell (ATL-DC) vaccination in patients with newly-diagnosed or recurrent WHO Grade III-IV malignant gliomas. The primary endpoints were to assess the most effective combination of vaccine and adjuvant in order to enhance the immune potency, along with safety. The combination of ATL-DC vaccination and TLR agonist was safe and found to enhance systemic immune responses, as indicated by increased interferon gene expression and changes in immune cell activation. Specifically, PD-1 expression increases on CD4+ T-cells, while CD38 and CD39 expression are reduced on CD8+ T cells, alongside an increase in monocytes. Poly-ICLC treatment amplifies the induction of interferon-induced genes in monocytes and T lymphocytes. Patients that exhibit higher interferon response gene expression demonstrate prolonged survival and delayed disease progression. These findings suggest that combining ATL-DC with poly-ICLC can induce a polarized interferon response in circulating monocytes and CD8+ T cells, which may represent an important blood biomarker for immunotherapy in this patient population.Trial Registration: ClinicalTrials.gov Identifier: NCT01204684.


Asunto(s)
Linfocitos T CD8-positivos , Vacunas contra el Cáncer , Carboximetilcelulosa de Sodio/análogos & derivados , Células Dendríticas , Glioma , Interferones , Poli I-C , Polilisina/análogos & derivados , Humanos , Células Dendríticas/inmunología , Células Dendríticas/efectos de los fármacos , Glioma/inmunología , Glioma/terapia , Femenino , Masculino , Persona de Mediana Edad , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/uso terapéutico , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Poli I-C/administración & dosificación , Poli I-C/farmacología , Adulto , Receptores Toll-Like/agonistas , Imidazoles/farmacología , Imidazoles/uso terapéutico , Anciano , Vacunación , Monocitos/inmunología , Monocitos/efectos de los fármacos , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamiento farmacológico , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/efectos de los fármacos , Inmunoterapia/métodos , Agonistas de los Receptores Toll-Like
2.
J Hematol Oncol ; 17(1): 31, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720342

RESUMEN

Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.


Asunto(s)
Neoplasias Encefálicas , Células Supresoras de Origen Mieloide , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Células Supresoras de Origen Mieloide/inmunología , Glioma/inmunología , Glioma/terapia , Glioma/patología , Glioblastoma/inmunología , Glioblastoma/terapia , Glioblastoma/patología , Animales , Inmunoterapia/métodos , Linfocitos T Reguladores/inmunología
3.
J Immunother Cancer ; 12(5)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724464

RESUMEN

BACKGROUND: Glioblastoma (GBM) almost invariably becomes resistant towards conventional treatment of radiotherapy and temozolomide (TMZ) chemotherapy, partly due to subpopulations of intrinsically resistant glioma stem-like cells (GSC). The oncolytic herpes simplex virus-1 G207 is a promising approach for GBM virotherapy although its efficacy in patients with GBM is often limited. Natural killer group 2 member D ligands (NKG2DLs) are minimally expressed by healthy cells but are upregulated by the DNA damage response (DDR) and in malignant cells with chronic DDR signaling, resulting in innate immune activation. METHODS: We have designed a bispecific T-cell engager (BiTE) capable of cross-linking CD3 on T cells with NKG2DL-expressing GBM cells. We then engineered the G207 virus to express the NKG2D BiTE and secrete it from infected cells. The efficacy of the free BiTE and BiTE delivered by G207 was evaluated in combination with conventional therapies in GBM cells and against patient-derived GSCs in the context of T-cell activation and target cell viability. RESULTS: NKG2D BiTE-mediated cross-linking of GBM cells and T cells causes antigen-independent T-cell activation, pro-inflammatory cytokine release, and tumor cell death, thereby combining direct viral oncolysis with BiTE-mediated cytotoxicity. Surface NKG2DL expression was further elevated on GBM cells following pretreatment with sublethal doses of TMZ and radiation to induce the DDR, increasing sensitivity towards G207-NKG2D BiTE and achieving synergistic cytotoxicity. We also demonstrate a novel strategy for targeting GSCs that are non-permissive to G207 infection but remain sensitive to NKG2D BiTE. CONCLUSIONS: We propose a potential model for targeting GSCs in heterogeneous tumors, whereby differentiated GBM cells infected with G207-NKG2D BiTE produce NKG2D BiTE locally, directing T-cell cytotoxicity towards the GSC subpopulations in the tumor microenvironment.


Asunto(s)
Glioblastoma , Subfamilia K de Receptores Similares a Lectina de Células NK , Células Madre Neoplásicas , Viroterapia Oncolítica , Humanos , Glioblastoma/terapia , Glioblastoma/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Células Madre Neoplásicas/metabolismo , Viroterapia Oncolítica/métodos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Línea Celular Tumoral
4.
Cells ; 13(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38727262

RESUMEN

Glioblastoma (GBM) is the most common primary malignant brain tumor, with a median overall survival of less than 2 years and a nearly 100% mortality rate under standard therapy that consists of surgery followed by combined radiochemotherapy. Therefore, new therapeutic strategies are urgently needed. The success of chimeric antigen receptor (CAR) T cells in hematological cancers has prompted preclinical and clinical investigations into CAR-T-cell treatment for GBM. However, recent trials have not demonstrated any major success. Here, we delineate existing challenges impeding the effectiveness of CAR-T-cell therapy for GBM, encompassing the cold (immunosuppressive) microenvironment, tumor heterogeneity, T-cell exhaustion, local and systemic immunosuppression, and the immune privilege inherent to the central nervous system (CNS) parenchyma. Additionally, we deliberate on the progress made in developing next-generation CAR-T cells and novel innovative approaches, such as low-intensity pulsed focused ultrasound, aimed at surmounting current roadblocks in GBM CAR-T-cell therapy.


Asunto(s)
Glioblastoma , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Humanos , Glioblastoma/terapia , Glioblastoma/inmunología , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología , Microambiente Tumoral/inmunología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/inmunología , Linfocitos T/inmunología , Animales
5.
CNS Neurosci Ther ; 30(5): e14720, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38715344

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM) is an aggressive malignant tumor with a high mortality rate and is the most prevalent primary intracranial tumor that remains incurable. The current standard treatment, which involves surgery along with concurrent radiotherapy and chemotherapy, only yields a survival time of 14-16 months. However, the introduction of tumor electric fields therapy (TEFT) has provided a glimmer of hope for patients with newly diagnosed and recurrent GBM, as it has been shown to extend the median survival time to 20 months. The combination of TEFT and other advanced therapies is a promising trend in the field of GBM, facilitated by advancements in medical technology. AIMS: In this review, we provide a concise overview of the mechanism and efficacy of TEFT. In addition, we mainly discussed the innovation of TEFT and our proposed blueprint for TEFT implementation. CONCLUSION: Tumor electric fields therapy is an effective and highly promising treatment modality for GBM. The full therapeutic potential of TEFT can be exploited by combined with other innovative technologies and treatments.


Asunto(s)
Neoplasias Encefálicas , Terapia por Estimulación Eléctrica , Glioblastoma , Humanos , Glioblastoma/terapia , Neoplasias Encefálicas/terapia , Terapia por Estimulación Eléctrica/métodos , Terapia por Estimulación Eléctrica/tendencias , Animales
6.
Front Immunol ; 15: 1369972, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690285

RESUMEN

Background: Temozolomide (TMZ) is a key component in the treatment of gliomas. Hypermutation induced by TMZ can be encountered in routine clinical practice, and its significance is progressively gaining recognition. However, the relationship between TMZ-induced hypermutation and the immunologic response remains controversial. Case presentation: We present the case of a 38-year-old male patient who underwent five surgeries for glioma. Initially diagnosed with IDH-mutant astrocytoma (WHO grade 2) during the first two surgeries, the disease progressed to grade 4 in subsequent interventions. Prior to the fourth surgery, the patient received 3 cycles of standard TMZ chemotherapy and 9 cycles of dose-dense TMZ regimens. Genomic and immunologic analyses of the tumor tissue obtained during the fourth surgery revealed a relatively favorable immune microenvironment, as indicated by an immunophenoscore of 5, suggesting potential benefits from immunotherapy. Consequently, the patient underwent low-dose irradiation combined with immunoadjuvant treatment. After completing 4 cycles of immunotherapy, the tumor significantly shrank, resulting in a partial response. However, after a 6-month duration of response, the patient experienced disease progression. Subsequent analysis of the tumor tissue obtained during the fifth surgery revealed the occurrence of hypermutation, with mutation signature analysis attributing TMZ treatment as the primary cause. Unfortunately, the patient succumbed shortly thereafter, with a survival period of 126 months. Conclusion: Patients subjected to a prolonged regimen of TMZ treatment may exhibit heightened vulnerability to hypermutation. This hypermutation induced by TMZ holds the potential to function as an indicator associated with unfavorable response to immunotherapy in gliomas.


Asunto(s)
Antineoplásicos Alquilantes , Neoplasias Encefálicas , Glioma , Mutación , Temozolomida , Humanos , Temozolomida/uso terapéutico , Masculino , Adulto , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Glioma/genética , Glioma/terapia , Glioma/tratamiento farmacológico , Antineoplásicos Alquilantes/uso terapéutico , Inmunoterapia/métodos , Resultado Fatal , Microambiente Tumoral/inmunología
7.
Am Soc Clin Oncol Educ Book ; 44(3): e431450, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723228

RESUMEN

Low-grade gliomas present a formidable challenge in neuro-oncology because of the challenges imposed by the blood-brain barrier, predilection for the young adult population, and propensity for recurrence. In the past two decades, the systematic examination of genomic alterations in adults and children with primary brain tumors has uncovered profound new insights into the pathogenesis of these tumors, resulting in more accurate tumor classification and prognostication. It also identified several common recurrent genomic alterations that now define specific brain tumor subtypes and have provided a new opportunity for molecularly targeted therapeutic intervention. Adult-type diffuse low-grade gliomas are frequently associated with mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2), resulting in production of 2-hydroxyglutarate, an oncometabolite important for tumorigenesis. Recent studies of IDH inhibitors have yielded promising results in patients at early stages of disease with prolonged progression-free survival (PFS) and delayed time to radiation and chemotherapy. Pediatric-type gliomas have high rates of alterations in BRAF, including BRAF V600E point mutations or BRAF-KIAA1549 rearrangements. BRAF inhibitors, often combined with MEK inhibitors, have resulted in radiographic response and improved PFS in these patients. This article reviews emerging approaches to the treatment of low-grade gliomas, including a discussion of targeted therapies and how they integrate with the current treatment modalities of surgical resection, chemotherapy, and radiation.


Asunto(s)
Neoplasias Encefálicas , Glioma , Isocitrato Deshidrogenasa , Clasificación del Tumor , Humanos , Glioma/genética , Glioma/terapia , Glioma/tratamiento farmacológico , Glioma/patología , Isocitrato Deshidrogenasa/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamiento farmacológico , Manejo de la Enfermedad , Mutación , Terapia Molecular Dirigida
8.
Nat Rev Dis Primers ; 10(1): 33, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724526

RESUMEN

Gliomas are primary brain tumours that are thought to develop from neural stem or progenitor cells that carry tumour-initiating genetic alterations. Based on microscopic appearance and molecular characteristics, they are classified according to the WHO classification of central nervous system (CNS) tumours and graded into CNS WHO grades 1-4 from a low to high grade of malignancy. Diffusely infiltrating gliomas in adults comprise three tumour types with distinct natural course of disease, response to treatment and outcome: isocitrate dehydrogenase (IDH)-mutant and 1p/19q-codeleted oligodendrogliomas with the best prognosis; IDH-mutant astrocytomas with intermediate outcome; and IDH-wild-type glioblastomas with poor prognosis. Pilocytic astrocytoma is the most common glioma in children and is characterized by circumscribed growth, frequent BRAF alterations and favourable prognosis. Diffuse gliomas in children are divided into clinically indolent low-grade tumours and high-grade tumours with aggressive behaviour, with histone 3 K27-altered diffuse midline glioma being the leading cause of glioma-related death in children. Ependymal tumours are subdivided into biologically and prognostically distinct types on the basis of histology, molecular biomarkers and location. Although surgery, radiotherapy and alkylating agent chemotherapy are the mainstay of glioma treatment, individually tailored strategies based on tumour-intrinsic dominant signalling pathways have improved outcome in subsets of patients.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Glioma/genética , Glioma/fisiopatología , Glioma/terapia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/fisiopatología , Pronóstico , Niño , Isocitrato Deshidrogenasa/genética , Mutación
9.
Neurosurg Rev ; 47(1): 209, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38724684

RESUMEN

Glioblastoma is a common and aggressive malignant central nervous system tumor in adults. This study aims to evaluate and analyze the scientific results, collaboration countries, main research topics, and topics over time reported about glioblastoma. A bibliometric analysis of glioblastoma publications was performed mainly using R and Multbiplot software for author, journal, and resume. Associated statistic methods Latent Dirichlet Allocation (LDA) and HJ-Biplot. Inclusion criteria were research articles from the PubMed database published in English between 1973 and December 2022. A total of 64,823 documents with an annual growth rate of 8.27% indicates a consistent increase in research output over time. The results for the number of citations and significant publications showed Cancer Res, J Neuro-Oncol, and Neuro-Oncology are the most influential journals in the field of glioblastoma. The countries that concentrated research were the tumor United States, China, Germany, and Italy. Finally, there has been a marked growth in studies on prognosis and patient survival, therapies, and treatments for glioblastoma. These findings reinforce the need for increased global resources to address glioblastoma, particularly in underdeveloped countries. Glioblastoma research's exponential growth reflects sustained interest in early diagnosis and patient survival.


Asunto(s)
Bibliometría , Neoplasias Encefálicas , Glioblastoma , Glioblastoma/terapia , Humanos , Neoplasias Encefálicas/terapia
11.
Technol Cancer Res Treat ; 23: 15330338241249026, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38693845

RESUMEN

Laser Interstitial Thermotherapy is a minimally invasive treatment option in neurosurgery for intracranial tumors, including recurrent gliomas. The technique employs the thermal ablation of target tissue to achieve tumor control with real-time monitoring of the extent by magnetic resonance thermometry, allowing targeted thermal injury to the lesion. Laser Interstitial Thermotherapy has gained interest as a treatment option for recurrent gliomas due to its minimally invasive nature, shorter recovery times, ability to be used even in patients with numerous comorbidities, and potential to provide local tumor control. It can be used as a standalone treatment or combined with other therapies, such as chemotherapy or radiation therapy. We describe the most recent updates regarding several studies and case reports that have evaluated the efficacy and safety of Laser Interstitial Thermotherapy for recurrent gliomas. These studies have reported different outcomes, with some demonstrating promising results in terms of tumor control and patient survival, while others have shown mixed outcomes. The success of Laser Interstitial Thermotherapy depends on various factors, including tumor characteristics, patient selection, and the experience of the surgical team, but the future direction of treatment of recurrent gliomas will include a combined approach, comprising Laser Interstitial Thermotherapy, particularly in deep-seated brain regions. Well-designed prospective studies will be needed to establish with certainty the role of Laser Interstitial Thermotherapy in the treatment of recurrent glioma.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Hipertermia Inducida , Terapia por Láser , Recurrencia Local de Neoplasia , Humanos , Glioblastoma/terapia , Hipertermia Inducida/métodos , Recurrencia Local de Neoplasia/terapia , Terapia por Láser/métodos , Neoplasias Encefálicas/terapia , Resultado del Tratamiento , Terapia Combinada
12.
Int J Mol Sci ; 25(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38732225

RESUMEN

Oncolytic viruses (OVs) are characterised by their preference for infecting and replicating in tumour cells either naturally or after genetic modification, resulting in oncolysis. Furthermore, OVs can elicit both local and systemic anticancer immune responses while specifically infecting and lysing tumour cells. These characteristics render them a promising therapeutic approach for paediatric brain tumours (PBTs). PBTs are frequently marked by a cold tumour immune microenvironment (TIME), which suppresses immunotherapies. Recent preclinical and clinical studies have demonstrated the capability of OVs to induce a proinflammatory immune response, thereby modifying the TIME. In-depth insights into the effect of OVs on different cell types in the TIME may therefore provide a compelling basis for using OVs in combination with other immunotherapy modalities. However, certain limitations persist in our understanding of oncolytic viruses' ability to regulate the TIME to enhance anti-tumour activity. These limitations primarily stem from the translational limitations of model systems, the difficulties associated with tracking reliable markers of efficacy throughout the course of treatment and the role of pre-existing viral immunity. In this review, we describe the different alterations observed in the TIME in PBTs due to OV treatment, combination therapies of OVs with different immunotherapies and the hurdles limiting the development of effective OV therapies while suggesting future directions based on existing evidence.


Asunto(s)
Neoplasias Encefálicas , Viroterapia Oncolítica , Virus Oncolíticos , Microambiente Tumoral , Humanos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/inmunología , Viroterapia Oncolítica/métodos , Microambiente Tumoral/inmunología , Virus Oncolíticos/fisiología , Virus Oncolíticos/genética , Niño , Inmunoterapia/métodos , Terapia Combinada/métodos , Animales
13.
Health Expect ; 27(3): e14073, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38733245

RESUMEN

BACKGROUND: Supported self-management can improve clinical and psychosocial outcomes in people with cancer; the considerations required to implement self-management support (SMS) for people living with a lower-grade glioma (LGG)-who often have complex support needs-are not known. We aimed to identify and understand these implementation considerations through the lens of normalisation process theory (NPT), from the perspectives of healthcare professionals (HCP) and people with LGG. METHODS: We conducted semistructured interviews with HCPs who support adults with brain tumours (n = 25; 12 different healthcare professions), and people with LGG who had completed primary treatment (n = 28; male n = 16, mean age 54.6 years, mean time since diagnosis 8.7 years), from across the United Kingdom. Interviews were transcribed and inductive open coding conducted, before deductively mapping to constructs of NPT. We first mapped HCP data, then integrated data from people with LGG to explore alignment in experiences and perspectives. RESULTS: We generated supporting evidence for all four NPT constructs and related subconstructs, namely: 'Coherence', 'Cognitive participation', 'Collective action' and 'Reflexive monitoring'. Data from HCPs and people with LGG clearly demonstrated that effective SMS constitutes a collective activity. Key implementation considerations included: ensuring awareness of, and access to, support; building strong HCP-support recipient relationships; and careful inclusion of close family and friends. We identified pertinent challenges, such as identifying support needs (influenced by the extent to which those with LGG engage in help-seeking), resistance to support (e.g., technology literacy), training for HCPs and HCP cooperation. CONCLUSIONS: This study demonstrates the collective nature of, and provides insight into the individual roles within, supported self-management. We outline considerations to operationalise, sustain and appraise the implementation of SMS for people with LGG. PATIENT OR PUBLIC CONTRIBUTION: People with brain tumours, and informal caregivers, were involved in the development of information materials and topic guides to ensure accessibility and pertinence. They also had opportunities to comment on interview findings.


Asunto(s)
Neoplasias Encefálicas , Glioma , Entrevistas como Asunto , Automanejo , Humanos , Masculino , Persona de Mediana Edad , Femenino , Glioma/terapia , Glioma/psicología , Reino Unido , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/psicología , Adulto , Investigación Cualitativa , Personal de Salud/psicología , Apoyo Social , Anciano
15.
World Neurosurg ; 185: e185-e208, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38741325

RESUMEN

OBJECTIVE: Access to neuro-oncologic care in Nigeria has grown exponentially since the first reported cases in the mid-1960s. In this systematic review and pooled analysis, we characterize the growth of neurosurgical oncology in Nigeria and build a reference paper to direct efforts to expand this field. METHODS: We performed an initial literature search of several article databases and gray literature sources. We included and subsequently screened articles published between 1962 and 2021. Several variables were extracted from each study, including the affiliated hospital, the number of patients treated, patient sex, tumor pathology, the types of imaging modalities used for diagnosis, and the interventions used for each individual. Change in these variables was assessed using Chi-squared independence tests and univariate linear regression when appropriate. RESULTS: A total of 147 studies were identified, corresponding to 5,760 patients. Over 4000 cases were reported in the past 2 decades from 21 different Nigerian institutions. The types of tumors reported have increased over time, with increasingly more patients being evaluated via computed tomography (CT) and magnetic resonance imaging (MRI). There is also a prevalent use of radiotherapy, though chemotherapy remains an underreported treatment modality. CONCLUSIONS: This study highlights key trends regarding the prevalence and management of neuro-oncologic pathologies within Nigeria. Further studies are needed to continue to learn and guide the future growth of this field in Nigeria.


Asunto(s)
Neoplasias Encefálicas , Nigeria/epidemiología , Humanos , Neoplasias Encefálicas/epidemiología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/diagnóstico por imagen , Oncología Médica/tendencias , Neurocirugia/tendencias
16.
Cell ; 187(10): 2521-2535.e21, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38697107

RESUMEN

Cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Here, we create "onion-like" multi-lamellar RNA lipid particle aggregates (LPAs) to substantially enhance the payload packaging and immunogenicity of tumor mRNA antigens. Unlike current mRNA vaccine designs that rely on payload packaging into nanoparticle cores for Toll-like receptor engagement in immune cells, systemically administered RNA-LPAs activate RIG-I in stromal cells, eliciting massive cytokine/chemokine response and dendritic cell/lymphocyte trafficking that provokes cancer immunogenicity and mediates rejection of both early- and late-stage murine tumor models. In client-owned canines with terminal gliomas, RNA-LPAs improved survivorship and reprogrammed the TME, which became "hot" within days of a single infusion. In a first-in-human trial, RNA-LPAs elicited rapid cytokine/chemokine release, immune activation/trafficking, tissue-confirmed pseudoprogression, and glioma-specific immune responses in glioblastoma patients. These data support RNA-LPAs as a new technology that simultaneously reprograms the TME while eliciting rapid and enduring cancer immunotherapy.


Asunto(s)
Inmunoterapia , Microambiente Tumoral , Animales , Inmunoterapia/métodos , Ratones , Perros , Humanos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Citocinas/metabolismo , Glioblastoma/terapia , Glioblastoma/inmunología , Ratones Endogámicos C57BL , Femenino , Glioma/terapia , Glioma/inmunología , Antígenos de Neoplasias/inmunología , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , ARN Mensajero/metabolismo , ARN Mensajero/genética , ARN/metabolismo , ARN/uso terapéutico , Línea Celular Tumoral , Neoplasias/terapia , Neoplasias/inmunología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/inmunología
17.
Nat Commun ; 15(1): 3732, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702309

RESUMEN

Immunotherapy with chimeric antigen receptor T cells for pediatric solid and brain tumors is constrained by available targetable antigens. Cancer-specific exons present a promising reservoir of targets; however, these have not been explored and validated systematically in a pan-cancer fashion. To identify cancer specific exon targets, here we analyze 1532 RNA-seq datasets from 16 types of pediatric solid and brain tumors for comparison with normal tissues using a newly developed workflow. We find 2933 exons in 157 genes encoding proteins of the surfaceome or matrisome with high cancer specificity either at the gene (n = 148) or the alternatively spliced isoform (n = 9) level. Expression of selected alternatively spliced targets, including the EDB domain of fibronectin 1, and gene targets, such as COL11A1, are validated in pediatric patient derived xenograft tumors. We generate T cells expressing chimeric antigen receptors specific for the EDB domain or COL11A1 and demonstrate that these have antitumor activity. The full target list, explorable via an interactive web portal ( https://cseminer.stjude.org/ ), provides a rich resource for developing immunotherapy of pediatric solid and brain tumors using gene or AS targets with high expression specificity in cancer.


Asunto(s)
Neoplasias Encefálicas , Exones , Receptores Quiméricos de Antígenos , Humanos , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/genética , Animales , Exones/genética , Niño , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Ratones , Inmunoterapia/métodos , Empalme Alternativo , Fibronectinas/genética , Fibronectinas/metabolismo , Fibronectinas/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto , Regulación Neoplásica de la Expresión Génica , RNA-Seq , Linfocitos T/inmunología , Linfocitos T/metabolismo , Línea Celular Tumoral , Inmunoterapia Adoptiva/métodos
18.
Gan To Kagaku Ryoho ; 51(4): 439-441, 2024 Apr.
Artículo en Japonés | MEDLINE | ID: mdl-38644315

RESUMEN

The patient was a 54-year-old male at the time of initial examination. He was aware of numbness and weakness in the left hemisphere of his body and came to see the hospital. He was diagnosed with brain metastasis of lung cancer and started treatment(cT2N0M1[Brain]). He underwent gamma knife for the head lesion and nivolumab for the lung lesion. The patient's lesions shrank with the success of the medical treatment, but recurred with small intestinal metastasis. He underwent a partial resection of the small intestine and was treated again with nivolumab, which resulted in a complete response. He is currently alive without recurrence. We have experienced a very rare case of recurrence-free survival after treatment for brain metastasis and small intestinal metastasis of lung cancer.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Intestinales , Neoplasias Pulmonares , Humanos , Masculino , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Persona de Mediana Edad , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/terapia , Neoplasias Intestinales/cirugía , Neoplasias Intestinales/patología , Neoplasias Intestinales/secundario , Neoplasias Intestinales/terapia , Terapia Combinada , Factores de Tiempo , Recurrencia , Radiocirugia , Nivolumab/uso terapéutico , Intestino Delgado/patología , Antineoplásicos Inmunológicos/uso terapéutico
20.
Brain Tumor Pathol ; 41(2): 43-49, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38564040

RESUMEN

Oligodendroglioma, IDH-mutant and 1p/19q-codeleted is known for their relative chemosensitivity and indolent clinical course among diffuse gliomas of adult type. Based on the data from phase 3 clinical trials, the standard of post-surgical care for those tumors is considered to be initial chemoradiotherapy regardless of histopathological grade, particularly with PCV. However, partly due to its renewed definition in late years, prognostic factors in patients with those tumors are not well established. Moreover, the survival rate declines over 15 years, with only a 37% OS rate at 20 years for grade 3 tumors, even with the current standard of care. Given that most of this disease occurs in young or middle-aged adults, further improvements in treatment and management are necessary. Here, we discuss prognostic factors, standard of care and chemotherapy, and future perspectives with neoadjuvant strategy in those tumors.


Asunto(s)
Neoplasias Encefálicas , Cromosomas Humanos Par 19 , Cromosomas Humanos Par 1 , Isocitrato Deshidrogenasa , Mutación , Terapia Neoadyuvante , Oligodendroglioma , Nivel de Atención , Humanos , Oligodendroglioma/genética , Oligodendroglioma/terapia , Oligodendroglioma/patología , Isocitrato Deshidrogenasa/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Pronóstico , Cromosomas Humanos Par 1/genética , Cromosomas Humanos Par 19/genética , Adulto , Deleción Cromosómica , Tasa de Supervivencia , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA